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Nonexponential relaxation and hierarchically constrained dynamics in a protein
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A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main
features of nonexponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.
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There have been various works in which similarities be-of the rebinding of the ligand after photodissociatipf.
tween the dynamics of proteins and the structure and dynanHere we focus on the pressure release relaxation experiments
ics of glasses and spin glasses have been discyésedl of Iben et al. [3]. Infrared absorption spectra of the stretch
Although the energy landscapes in the two systems may bleands of the CO were taken under various conditions. After
quite different, nonexponential relaxation is observed inpressure release, the center frequency of¢hkand initially
both. In glasses, relaxation often follows the stretched exposhifts rapidly upward by 0.4 cih and then relaxes slowly

nential form characteristic of the “Kohlraush law”: toward its low-pressure equilibrium value, 1.2 énhigher.
B s This behavior at various temperatures was shown in Fig. 3 of
D) = Poexp - (U], 0<B<1, (1) Ref.[3] and it is replotted heréwithout the error baisas

wherer is a temperature-dependent characteristic time whicffig. 1. It seen that the relaxation is close to power law over

becomes unmeasurably long as the glass transition temper@ore than three decades of time, thus much slower than ex-

ture is approached. It is often experimentally observed t@onential, or even stretched exponential.

follow, over 10 orders of magnitude, a Vogel-Fulcher law It is of interest to ask whether there is a model of hierar-

[5], rcexdA/(T-Ty)]. chically constrained dyngmics as proposgd in R&fwhich
Now, any reasonable relaxation functidt) can be fitby ~ can account for the main features of Fig. 1. These are as

assuming some distribution(r) of relaxation times among follows. (a) At each temperature there is a region of power-
additive contributions to the relaxing quantity, thus law relaxation which crosses over at shorter times to some-

thing much slower(b) This crossover time increases as tem-
“ perature decrease&) The power law is the same at each
®(1) :f drw(r)exp(-t/). (2) temperature, but there is an increasing offset as the tempera-
0 ture is lowered.
This extends the idea of conventional Debye relaxation with In what follows, it will be shown that one of the models
a single relaxation time to a situation in which there is amentioned in Ref{6] in fact gives behavior identical to what
distribution of degrees of freedom each contributing inde-was observed in MbCO. For HCD, one recognizes that equi-
pendently tab(t) with its own relaxation time—thuparallel  librium distributions in configuration space are not relevant
relaxation. since the free energy barriers which determine relaxation are
A different point of view was proposed by Palmer, Stein,continuously changing in time as different degrees of free-
Abrahams, and Andersd6]. They pointed out that the con- dom relax at different rates. Furthermore, in a strongly cor-
ventional parallel picture, while simple, is often microscopi- related system one expects that with any choice of coordi-
cally arbitrary and that a more physical view is that the pathnates, interactions will remain in the form of constraints and
to equilibrium is governed by many sequential correlatedhat these will be of importance over a range of time scales.
steps—thus &eriesinterpretation in which there are strong The nature of constraints is that some degrees of freedom
correlations between different degrees of freedom. These agannot relax until their motion is made possible by the relax-
thors proposefl6] a microscopically motivated model of hi-
erarchically constrained dynamigdCD) which leads to the

. ) Wil 174 # 2 2 ¢ ¢,

Kohlrausch law(and a maximal relaxation time of the Vogel- 1 .° o A, . * .
Fulcher form). That result was cited by Shibata, Kurata, and 0.5 1 . A o,
Kushida[4] to argue that HCD holds in their observation of I .. * . a
stretched exponential relaxation in an experiment on confor- ~ . 179K " . . °

mational dynamics in Zn-substituted myoglobin. Of course it = s . %o

is possible, and sometimes likely, that both parallel and se- o1 ® 174K . . *
quential processes exist in the same system. B [

In a discussion of anomalous relaxation in proteins, lben 0.05 ] *- 164K -
et al. [3] presented data on carbonmonoxymyoglobin o 02 e o
(MbCO). This is myoglobin in which CO is bound to the  (sec)
central iron atom of the heme group. In this system, parallel
relaxation processes also occur; they dominate the dynamics FIG. 1. Experimental relaxation in MbC{3].
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ation of other degrees of freedom. These restrictions occur 14
over a wide hierarchy of coordinates, from fast ones to slow 1
ones. A complete discussion of this HCD approach is given 0.5 1
in Ref. [6]. ]
To implement this picture, Palmet al.[6] set up a hier-
archy of levelsn=0, 1, 2, 3,... . The degrees of freedom in
level n are represented b, Ising pseudospingtwo-level
center$ each of which has two possible states. This was
adapted from earlier work of Ste[2]. Constraints enter via
the requirement that each “spin” in levak1 is free to
change its state only if a condition on some numpgrof

spins in leveln is satisfied. Now, theu, spins have 2 FIG. 2. Comparison of theory and rescaled data: The data of
states. Let the required condition be that just one of thesgig. 1 for eachT are rescaled so that they fall on top of the theo-
possible states is realized. If the average relaxation time ifetical expressiofiEg. (9)], which is plotted as the solid line.

level n is 7, then on average, it will take a time“2;, for a
spin in leveln+1 to change its state. Therefore

179K
174K
169K
- 164K
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¢ > o R

— =vi{n/yvt/y)

log[z /7(T)]

u
n-1 Yv,u) = fo dx x~e™. (8)
7= 1ol | exp(uiin 2) = rexpU,, (3
0 The result i 9]
where o\ v
-, | o
- (1) = v( t ) Yt 9
Up=2 wiln 2. (4) .
0 wherev=In \/ug. For large values of its second argument,

v(v,u) approaches the complete gamma funcfign). Thus,
The relaxation function is given as a sum of the correlationat |arge times ®(t)=t™, as observed[3]. For small

functions of all the degrees of freeddn u, y(v,u) =u’/v=u"*1/(v+1)+---, so that for short times,
N d(t) crosses over to a slower 1-cofist;) dependence.

_ Temperature dependence is introduced in the model through

(1) _(1/N)§1<S(O)S(t)>' ®) the temperature dependence of the fundamental relaxation

time 74(T); its inverse corresponds to the rate consta(i)
In a correlated system, the dynamics of Bere not inde-  introduced in Ref|3]. Thus the behavior of Eq9) is similar
pendent, so each of the correlation functions in &y.de- to the form
pends on the behavior of the oth®s. As described above,
the HCD scheme of Palmat al. [6] incorporates correla- O(t) =[1 +k(Mt]™, (10
tions. TheS are arranged in a hierarchy of levelsvith each ) o .
level having its characteristic relaxation timggiven by Eq. ~ Which was used in Fig. 3 of Reff3] to fit the data.

(3). So Eq.(5) may be rewritten as a sum over the different The appearance of the experimental points at different
levels from O toce: temperatures, in particular that the data are parélel same

power law for allT) at long times, suggests that a scaling
* function could describe the experimental results. A general
D(t) = >, wyexp(—t/ny), (6) formis
n=0

. . D(t,T) o« TGt/ 70(T)]. (12)
wherew,=N,/N is the fraction of the total number of de-
grees of freedom which are in level[8]. 3 Therefore, by rescaling the time by a parametg) for
For a given modelw, and u, must be specified. As re- each temperature the data #t, T)/T* would all fall on a
marked in Ref[6], the simple choicegu,=uo/IN2, @ con-  gingle curve. The fact that the power law of the long time
stant andw,=w,/\ give power-law relaxation. Here, this penayior is independent of implies that the exponend
situation is examined more fully. _ _ =0. If this rescaling is carried out, the temperature depen-
The sum in Eq(6) is rewritten as an integral using the gence of the characteristic rescaling timgT) may be de-
above choices fow and p: termined. This rescaling for the data of Ibeh al. [3] is
" shown in Fig. 2, where the solid line is explained in the
d(t) :WoJ dn \exp (— t/7)e "], 7) following paragraph. It is seen that the coIIapsg of the da_lta is
0 excellent and supports the suggestion of scaling behavior.
If in addition one has a theoretical expression which has a
where from normalization &at=0, wo=In \. This integral is  scaling form, such as Ed9), then by collapsing the data
evaluated exactly in terms of the incomplete gamma functioronto the theoretical curve, one obtains the numerical values
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— = 1.5x 10" exp[-(1105/T)’] What conclusions can be drawn from the present analy-
sis? The scenario that the model describes is one in which
o1k the primary relaxation event represents the rate,(T) at
which a typical enthalpy barrier is overcome. Since no fur-
0.01F ther T dependence is introduced, the conclusion is that all
subsequent relaxation events are “slavil®?] to the primary
one and that they represent entropic conformational changes
0.0001 of the molecule.
| | 1 ! A Los Alamos group has independently been analyzing
160 165 175 170 180 the relaxation processes in MbG@2,13. Remarkably, they
&) have reached conclusions which are consistent with the
present heirarchical model for the relaxation of the CO vi-
bration frequency. Namely, they argue that the temperature
dependence of the relaxation is governed by an activation
of 7(T). This is carried out for the hierarchical model of Eq. enthalpy for which the solvent is responsible. This deter-
(9) in Fig. 2. The value ofv in Eq. (9) is adjusted to agree mines the rate of the fastest relaxation process#T} in
with the common largé slope as seen in Fig(@. The solid  the hierarchical model. Subsequent relaxations involve de-
curve in Fig. 2 is Eq(9) with v set equal to 0.28. The values grees of freedom of the protein and the hydration shell and
of ) for each of the four temperatures are plotted in F|g 3,are governed by entropy barriers; they have the same tem-

1F

1ty (D

(sec’))

0.001

FIG. 3. Fundamental relaxation rate.

where the solid curve is a fit using the expression perature dependence as the solvent fluctuation rate and are
slower. This description is precisely the same as that of the
1ro(T) = koexd — (T/T)?]. (12)  hierarchical model presented here. The physically motivated

scenario of the successful hierarchical approach lends sup-
The result isky=1.5x 10'®s™* and T,=1105 K [11]. With  port to the indentification of the physical relaxation pro-
only four points, a number of different functional forms cesses described in R¢l.2].
might seem equally good. In particular, an Arrhenius form There exist in the literature other experiments and expla-
works almost as well, but has an unacceptably large prenations involving MbC{ 14]. These are not relevant for the
exponential factof12]. The form chosen has been suggestedoresent analysis since they have different physical environ-
by several authorg3,10]; it can describe diffusion in a ran- ments and/or address different relaxation processes. For ex-
dom potential of a form which mimics the potential surfaceample, the kinetics of ligand rebinding is often discussed.
of a protein. The present discussion concerns relaxational effaftes re-

As discussed in Ref3], the observed relaxation process binding. It is also to be expected that the kinetics will be
most likely involves substates having different conforma-quite different when the MbCO is dehydrated, as in the ex-
tional molecular structures as well as different angles of thgeriments of Hageet al. [14].

CO ligand with respect to the heme normal. With this in  The analysis presented here can be generalized to more
mind, contact may be made between the parameters of tteomplicated situations. For example, the hierarchical rules
above model and the actual experiment. Recall thatnea-  could be modified to include simultaneous parallel relaxation
sures the number of “spins” in a given level which must(“unslaved) processes as in the ligand rebinding referred to
arrive at a certain configuration before a typical spin in theearlier, internal enthalpic barriers, reverse constraints, and
next level becomes unfrozen and can relax. The physicahtralevel correlations. While other forms than Ef) might
picture of constrained movement of atoms which underlieit the MbCO data, within the hierarchical scenario the fact
the model and its application to MbCO then implies that thisthat the long time behavior is a scaleable power law practi-
number should be around 3 to 5 or so. The numbenea- cally forces the simple rules which were used to obtain Eq.
sures the geometric reduction of the fraction of spins which(9). The success of this approach suggests that a similar pic-
belong to leveln asn increases through slower and slower ture and analysis can be relevant for other dynamical pro-
levels.®(t) has only a logarithmic dependence ®rso it is  cesses in biological molecules. If so, insight can be obtained
reasonable to take hto be of order unity. This givey  about the physical processes which determine the relaxation
=In XN/ up=1. The fit value isr=0.28, i.e., slightly less than phenomena.

four spins, on average, combine to unfreeze the degrees of Within the hierarchical model, the long time behavior is
freedom at the next level. This seems quite reasonable. determined by the largem levels of the hierarchy. These

Equation(10), taken from Eq(1) of Ref.[3] is consistent presumably represent collective degrees of freedom made up
with the present Eq(9) in that they agree in the limits of of individual atomic motions. Because the approach with few
small and large/ 7,. Therefore the fit by Ibeet al.[3] using  parameters successfully describes the data, it is tempting to
Eqg. (10) is also satisfactory. However, there is no physicalsuggest that the observed scaling behavior and the long time
motivation for that form whereas in the present work thepower law are generic and independent of the microscopic
observed nonexponential relaxation in MbCO is deriveddetails of the system. If so, this is an example in a molecular
from a microscopic model which incorporates strong-system of protected behavior, a subject that has recently been
correlation constraints on the relaxation of the molecule in aliscussed in a variety of contexts concerning emergent phe-
definite way. nomeng15].
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