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A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main
features of nonexponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.
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There have been various works in which similarities be-
tween the dynamics of proteins and the structure and dynam-
ics of glasses and spin glasses have been discussedf1–4g.
Although the energy landscapes in the two systems may be
quite different, nonexponential relaxation is observed in
both. In glasses, relaxation often follows the stretched expo-
nential form characteristic of the “Kohlraush law”:

Fstd = F0expf− st/tdbg, 0 , b , 1, s1d

wheret is a temperature-dependent characteristic time which
becomes unmeasurably long as the glass transition tempera-
ture is approached. It is often experimentally observed to
follow, over 10 orders of magnitude, a Vogel-Fulcher law
f5g, t~expfA/ sT−T0dg.

Now, any reasonable relaxation functionFstd can be fit by
assuming some distributionwstd of relaxation times among
additive contributions to the relaxing quantity, thus

Fstd =E
0

`

dt wstdexps− t/td. s2d

This extends the idea of conventional Debye relaxation with
a single relaxation time to a situation in which there is a
distribution of degrees of freedom each contributing inde-
pendently toFstd with its own relaxation time—thusparallel
relaxation.

A different point of view was proposed by Palmer, Stein,
Abrahams, and Andersonf6g. They pointed out that the con-
ventional parallel picture, while simple, is often microscopi-
cally arbitrary and that a more physical view is that the path
to equilibrium is governed by many sequential correlated
steps—thus aseriesinterpretation in which there are strong
correlations between different degrees of freedom. These au-
thors proposedf6g a microscopically motivated model of hi-
erarchically constrained dynamicssHCDd which leads to the
Kohlrausch lawsand a maximal relaxation time of the Vogel-
Fulcher formd. That result was cited by Shibata, Kurata, and
Kushidaf4g to argue that HCD holds in their observation of
stretched exponential relaxation in an experiment on confor-
mational dynamics in Zn-substituted myoglobin. Of course it
is possible, and sometimes likely, that both parallel and se-
quential processes exist in the same system.

In a discussion of anomalous relaxation in proteins, Iben
et al. f3g presented data on carbonmonoxymyoglobin
sMbCOd. This is myoglobin in which CO is bound to the
central iron atom of the heme group. In this system, parallel
relaxation processes also occur; they dominate the dynamics

of the rebinding of the ligand after photodissociationf7g.
Here we focus on the pressure release relaxation experiments
of Iben et al. f3g. Infrared absorption spectra of the stretch
bands of the CO were taken under various conditions. After
pressure release, the center frequency of theA0 band initially
shifts rapidly upward by 0.4 cm−1 and then relaxes slowly
toward its low-pressure equilibrium value, 1.2 cm−1 higher.
This behavior at various temperatures was shown in Fig. 3 of
Ref. f3g and it is replotted hereswithout the error barsd as
Fig. 1. It seen that the relaxation is close to power law over
more than three decades of time, thus much slower than ex-
ponential, or even stretched exponential.

It is of interest to ask whether there is a model of hierar-
chically constrained dynamics as proposed in Ref.f6g which
can account for the main features of Fig. 1. These are as
follows. sad At each temperature there is a region of power-
law relaxation which crosses over at shorter times to some-
thing much slower.sbd This crossover time increases as tem-
perature decreases.scd The power law is the same at each
temperature, but there is an increasing offset as the tempera-
ture is lowered.

In what follows, it will be shown that one of the models
mentioned in Ref.f6g in fact gives behavior identical to what
was observed in MbCO. For HCD, one recognizes that equi-
librium distributions in configuration space are not relevant
since the free energy barriers which determine relaxation are
continuously changing in time as different degrees of free-
dom relax at different rates. Furthermore, in a strongly cor-
related system one expects that with any choice of coordi-
nates, interactions will remain in the form of constraints and
that these will be of importance over a range of time scales.
The nature of constraints is that some degrees of freedom
cannot relax until their motion is made possible by the relax-

FIG. 1. Experimental relaxation in MbCOf3g.
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ation of other degrees of freedom. These restrictions occur
over a wide hierarchy of coordinates, from fast ones to slow
ones. A complete discussion of this HCD approach is given
in Ref. f6g.

To implement this picture, Palmeret al. f6g set up a hier-
archy of levelsn=0, 1, 2, 3,… . The degrees of freedom in
level n are represented byNn Ising pseudospinsstwo-level
centersd each of which has two possible states. This was
adapted from earlier work of Steinf2g. Constraints enter via
the requirement that each “spin” in leveln+1 is free to
change its state only if a condition on some numbermn of
spins in leveln is satisfied. Now, themn spins have 2mn

states. Let the required condition be that just one of these
possible states is realized. If the average relaxation time in
level n is tn, then on average, it will take a time 2mntn for a
spin in leveln+1 to change its state. Therefore

tn = t0p
0

n−1

expsmiln 2d = t0expUn, s3d

where

Un = o
0

n−1

miln 2. s4d

The relaxation function is given as a sum of the correlation
functions of all the degrees of freedomSi:

Fstd = s1/Ndo
i=1

N

kSis0dSistdl. s5d

In a correlated system, the dynamics of theSi are not inde-
pendent, so each of the correlation functions in Eq.s5d de-
pends on the behavior of the otherS’s. As described above,
the HCD scheme of Palmeret al. f6g incorporates correla-
tions. TheSi are arranged in a hierarchy of levelsn with each
level having its characteristic relaxation timetn given by Eq.
s3d. So Eq.s5d may be rewritten as a sum over the different
levels from 0 to`:

Fstd = o
n=0

`

wnexps− t/tnd, s6d

wherewn=Nn/N is the fraction of the total number of de-
grees of freedom which are in leveln f8g.

For a given model,wn and mn must be specified. As re-
marked in Ref.f6g, the simple choicesmn=m0/ ln 2, a con-
stant andwn=wn−1/l give power-law relaxation. Here, this
situation is examined more fully.

The sum in Eq.s6d is rewritten as an integral using the
above choices forw andm:

Fstd = w0E
0

`

dn l−nexpfs− t/t0de−nm0g, s7d

where from normalization att=0, w0= ln l. This integral is
evaluated exactly in terms of the incomplete gamma function

gsn,ud =E
0

u

dx xn−1e−x. s8d

The result isf9g

Fstd = nS t0

t
Dn

gsn,t/t0d, s9d

wheren; ln l /m0. For large values of its second argument,
gsn ,ud approaches the complete gamma functionGsnd. Thus,
at large times Fstd~ t−n, as observedf3g. For small
u,gsn ,ud<un /n−un+1/ sn+1d+¯, so that for short times,
Fstd crosses over to a slower 1−constst /t0d dependence.
Temperature dependence is introduced in the model through
the temperature dependence of the fundamental relaxation
time t0sTd; its inverse corresponds to the rate constantkrsTd
introduced in Ref.f3g. Thus the behavior of Eq.s9d is similar
to the form

Fstd = f1 + krsTdtg−n, s10d

which was used in Fig. 3 of Ref.f3g to fit the data.
The appearance of the experimental points at different

temperatures, in particular that the data are parallelsthe same
power law for allTd at long times, suggests that a scaling
function could describe the experimental results. A general
form is

Fst,Td ~ TaGft/t0sTdg. s11d

Therefore, by rescaling the time by a parametert0sTd for
each temperature the data forFst ,Td /Ta would all fall on a
single curve. The fact that the power law of the long time
behavior is independent ofT implies that the exponenta
=0. If this rescaling is carried out, the temperature depen-
dence of the characteristic rescaling timet0sTd may be de-
termined. This rescaling for the data of Ibenet al. f3g is
shown in Fig. 2, where the solid line is explained in the
following paragraph. It is seen that the collapse of the data is
excellent and supports the suggestion of scaling behavior.

If in addition one has a theoretical expression which has a
scaling form, such as Eq.s9d, then by collapsing the data
onto the theoretical curve, one obtains the numerical values

FIG. 2. Comparison of theory and rescaled data: The data of
Fig. 1 for eachT are rescaled so that they fall on top of the theo-
retical expressionfEq. s9dg, which is plotted as the solid line.
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of t0sTd. This is carried out for the hierarchical model of Eq.
s9d in Fig. 2. The value ofn in Eq. s9d is adjusted to agree
with the common larget slope as seen in Fig. 2sad. The solid
curve in Fig. 2 is Eq.s9d with n set equal to 0.28. The values
of t0 for each of the four temperatures are plotted in Fig. 3,
where the solid curve is a fit using the expression

1/t0sTd = k0expf− sT0/Td2g. s12d

The result isk0=1.531016 s−1 and T0=1105 K f11g. With
only four points, a number of different functional forms
might seem equally good. In particular, an Arrhenius form
works almost as well, but has an unacceptably large pre-
exponential factorf12g. The form chosen has been suggested
by several authorsf3,10g; it can describe diffusion in a ran-
dom potential of a form which mimics the potential surface
of a protein.

As discussed in Ref.f3g, the observed relaxation process
most likely involves substates having different conforma-
tional molecular structures as well as different angles of the
CO ligand with respect to the heme normal. With this in
mind, contact may be made between the parameters of the
above model and the actual experiment. Recall thatm0 mea-
sures the number of “spins” in a given level which must
arrive at a certain configuration before a typical spin in the
next level becomes unfrozen and can relax. The physical
picture of constrained movement of atoms which underlies
the model and its application to MbCO then implies that this
number should be around 3 to 5 or so. The numberl mea-
sures the geometric reduction of the fraction of spins which
belong to leveln as n increases through slower and slower
levels.Fstd has only a logarithmic dependence onl so it is
reasonable to take lnl to be of order unity. This givesn
=ln l /m0&1. The fit value isn=0.28, i.e., slightly less than
four spins, on average, combine to unfreeze the degrees of
freedom at the next level. This seems quite reasonable.

Equations10d, taken from Eq.s1d of Ref. f3g is consistent
with the present Eq.s9d in that they agree in the limits of
small and larget /t0. Therefore the fit by Ibenet al. f3g using
Eq. s10d is also satisfactory. However, there is no physical
motivation for that form whereas in the present work the
observed nonexponential relaxation in MbCO is derived
from a microscopic model which incorporates strong-
correlation constraints on the relaxation of the molecule in a
definite way.

What conclusions can be drawn from the present analy-
sis? The scenario that the model describes is one in which
the primary relaxation event represents the rate 1/t0sTd at
which a typical enthalpy barrier is overcome. Since no fur-
ther T dependence is introduced, the conclusion is that all
subsequent relaxation events are “slaved”f12g to the primary
one and that they represent entropic conformational changes
of the molecule.

A Los Alamos group has independently been analyzing
the relaxation processes in MbCOf12,13g. Remarkably, they
have reached conclusions which are consistent with the
present heirarchical model for the relaxation of the CO vi-
bration frequency. Namely, they argue that the temperature
dependence of the relaxation is governed by an activation
enthalpy for which the solvent is responsible. This deter-
mines the rate of the fastest relaxation process—1/t0sTd in
the hierarchical model. Subsequent relaxations involve de-
grees of freedom of the protein and the hydration shell and
are governed by entropy barriers; they have the same tem-
perature dependence as the solvent fluctuation rate and are
slower. This description is precisely the same as that of the
hierarchical model presented here. The physically motivated
scenario of the successful hierarchical approach lends sup-
port to the indentification of the physical relaxation pro-
cesses described in Ref.f12g.

There exist in the literature other experiments and expla-
nations involving MbCOf14g. These are not relevant for the
present analysis since they have different physical environ-
ments and/or address different relaxation processes. For ex-
ample, the kinetics of ligand rebinding is often discussed.
The present discussion concerns relaxational effectsafter re-
binding. It is also to be expected that the kinetics will be
quite different when the MbCO is dehydrated, as in the ex-
periments of Hagenet al. f14g.

The analysis presented here can be generalized to more
complicated situations. For example, the hierarchical rules
could be modified to include simultaneous parallel relaxation
s“unslaved”d processes as in the ligand rebinding referred to
earlier, internal enthalpic barriers, reverse constraints, and
intralevel correlations. While other forms than Eq.s9d might
fit the MbCO data, within the hierarchical scenario the fact
that the long time behavior is a scaleable power law practi-
cally forces the simple rules which were used to obtain Eq.
s9d. The success of this approach suggests that a similar pic-
ture and analysis can be relevant for other dynamical pro-
cesses in biological molecules. If so, insight can be obtained
about the physical processes which determine the relaxation
phenomena.

Within the hierarchical model, the long time behavior is
determined by the largern levels of the hierarchy. These
presumably represent collective degrees of freedom made up
of individual atomic motions. Because the approach with few
parameters successfully describes the data, it is tempting to
suggest that the observed scaling behavior and the long time
power law are generic and independent of the microscopic
details of the system. If so, this is an example in a molecular
system of protected behavior, a subject that has recently been
discussed in a variety of contexts concerning emergent phe-
nomenaf15g.

FIG. 3. Fundamental relaxation rate.
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